Designing Algorithms with Edit Graph Longest Common Subsequence

Lecture 07.04
by Marina Barsky

Recap: Useful abstraction: edit graph

An edit graph for a pair of strings S_{1} and S_{2} has
$(N+1)^{*}(M+1)$ vertices, each labeled with a corresponding pair (i,j),
$0 \leq i \leq N, 0 \leq j \leq M$
The edges are directed and their weight depends on the specific string problem: for the edit distance problem red edges have cost 0 , black edges have cost 1

The cheapest path in the edit graph

The cost of a cheapest path from vertex $(0,0)$ to vertex (N, M) in this edit graph corresponds to the edit distance between S1 and S2, and the path itself represents a series of edit operations and an optimal alignment of S1 with S2

Motivation: sequence similarity

\square Life is based on a repertoire of successful structural and interrelated building blocks which are passed around
\square Biological universality occurs at many levels of details, so we can compare not only the sequence data, but 3D shapes, chemical pathways, morphological features etc.
"Everything in life is so similar that the same genes that work in flies are the ones that work in humans" (Wieschaus, 1995)

Why compare biosequences

\square The biological sequences (DNA, RNA or protein) encode and reflect the higher-level molecular structures and mechanisms
\square High sequence similarity usually implies significant structural and functional similarity
\square A tractable, though partly heuristic way to infer structure and function of an unknown protein is to search for the similar known proteins at the sequence level: similar but not identical!

Note of caution in interpreting sequence similarity

\square There is not a one-to-one correspondence between similar sequences and similar structures or between sequences and functions:
\square Quite similar structures can be obtained from completely unrelated sequences
\square Very similar sequences can produce very different structures depending on the location of a change

Edit distance as a measure of similarity

$S 1$	a	-	c	a	t
$S 2$	a	t	c	a	-

If the number of basic evolutionary events is small, we infer that the divergence between S1 and S2 happened not so long time ago, and that the two strings are still similar

The smaller is the edit distance between 2 strings, the more similar they are

Optimal alignment

$S 1$	a	-	c	a	t
$S 2$	a	t	c	a	-

Evolutionary explanation:
S_{2} evolved from S_{1} by a series of the following mutations:
Insertion of nucleotide t at position 2
Deletion of nucleotide t at position 5

An optimal alignment is not unique

$S 1$	-	a	t	t	a	a	g
$S 2$	t	a	-	t	c	a	g
$S 1$	-	a	t	t	a	a	g
$S 2$	t	a	t	c	a	-	g

2 different alignments with the optimal minimal cost 3

The exact sequence of changes (mutations) cannot be determined

The edit-distance based similarity metric

S	a	c	c	g	c
S1	a	c		g	c

Edit distance: 1

S	a	c	c	g	c
S2		c	c	g	t

Edit distance: 2

The smaller is the edit distance, the larger is the similarity.
S is more similar to S 1 than to S 2

The edit-distance based similarity metric: not enough

S	\mathbf{a}	\mathbf{c}	c	g	\mathbf{c}
S 1	\mathbf{a}	\mathbf{c}		t	\mathbf{c}

S	\mathbf{a}		\mathbf{c}	\mathbf{c}		\mathbf{g}	\mathbf{c}
S 2	\mathbf{a}	\mathbf{c}	\mathbf{c}	\mathbf{c}	t	\mathbf{g}	\mathbf{c}

The edit distance alone is not always a sufficient metric to characterize similarity between strings

In these 2 examples, the edit distance between S and $S 1$ is the same as an edit distance between S and $S 2$, but it is intuitively clear that S is more similar to S2 than to S1, since they share more identical characters

We want to evaluate what was preserved rather than what changed to infer similarity

The longest common substring

- The longest substring, common to both strings: the longest sequence of consecutive characters which occur in both strings

The longest sequence of consecutive matches

S	\mathbf{a}	\mathbf{c}	\mathbf{c}	g	\mathbf{c}
S1	\mathbf{a}	\mathbf{c}		t	\mathbf{c}

S	\mathbf{a}		\mathbf{c}	\mathbf{c}		\mathbf{g}	\mathbf{c}
S 2	\mathbf{a}	\mathbf{c}	\mathbf{c}	\mathbf{c}	t	\mathbf{g}	\mathbf{c}

The longest common subsequence

- A subsequence of a string S is a subset of characters of S in their original relative order. A subsequence does not need to consist of the consecutive characters of S
- Given 2 strings S1 and S2, a common subsequence for 2 strings is a subsequence which appears both in S1 and S2
- The longest common subsequence is a longest between all possible subsequences of S1 and S2

Substring vs subsequence

its - a subsequence of winters

inter - both substring and subsequence of winters

Longest Common Subsequence

 (LCS)| m | a | d | b | u | n | n | y |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| b | a | d | m | o | n | e | y |

Common subsequence of length 3

m	a	d	b	u	n	n	y
b	a	d	m	o	n	e	y

Common subsequence of length 4

How can we be sure that adny is the longest common subsequence?

The LCS problem

Input: 2 strings S_{1} and S_{2}
Output: the length of the longest subsequence common to both strings along with the subsequence itself

Edit Graph for LCS problem

An edit graph for a pair of strings S_{1} and S_{2} can be used to solve the LCS problem

We need to change edge weights: in the LCS problem we are only interested in a sequence of matches - red edges have cost 1, black edges have cost 0

Dynamic Programming solution for LCS. Edit graph

		b	a	d	m	o	n	e	y
	0								
m									
a									
d									
b									
u									
n									
n									
y									

Since we are interested in a longest sequence of matches, we give to the red edges cost 1 and to all the other edges cost 0

Since aligning 2 different characters does not contribute to the total score we do not consider the diagonal edges in case of mismatch

Dynamic Programming solution for LCS. Greedy path

		b	a	d	m	o	n	e	y
	0								
m									
a									
d									
b									
u									
n									
n									
y									

The LCS problem can be reduced to finding the greediest (the longest) path through matches -
the path with the largest cost

Base condition

		b	a	d	m	o	n	e	y
	0	0	0	0	0	0	0	0	0
m	0								

All the black edges are of cost 0 , so moving strictly right or down gives paths of a total cost 0

LCS. Recurrence relation

$\operatorname{COST}(\mathrm{i}, \mathrm{j})=\boldsymbol{\operatorname { m a x }}\left\{\begin{array}{l}\operatorname{COST}(\mathrm{i}-1, \mathrm{j}) \\ \operatorname{COST}(\mathrm{i}, \mathrm{j}-1) \\ \operatorname{COST}(\mathrm{i}-1, \mathrm{j}-1)+1 \text { if } \operatorname{S1}[\mathrm{i} \mathrm{i}=\operatorname{S} 2[\mathrm{j}]\end{array}\right.$

We only consider the diagonal edge if the characters match

Tabular computation. Row 1

Tabular computation. Row 2

		b	a	d	m	o	n	e	y
	0	0	0	0	0	0	0	0	0
m	0	0	0	0		$\underset{1}{l}$	1	1	1
a	0	0		1	1	1	1	1	1
d	0								
b	0								
u	0								
n	0								
n	0								
y	0								

Alternative path

Tabular computation. Row 3

		b	a	d	m	0	n	e	y	
	0	0	0	0	0	0	0	0	0	
m	0	0	0	0	,	1	1	1	1	j
a	0	0	N	1	1	1	1	1	1	
d	0	0	1	2	2	2	2	2	2	
b	0									
u	0									
n	0									
n	0									
y	0								-	

Tabular computation. Row 4

		b	a	d	m	o	n	e	y
	0	0	0	0	0	0	0	0	0
m	0	0	0	0		1	1	1	1
a	0	0		1	1	1	1	1	1
d	0	0	1		2	2	2	2	2
b	0		1	2	2	2	2	2	2
u	0								
n	0								
n	0								
y	0								

Tabular computation. Rows 5,6

		b	a	d	m	0	n	e	y
	0	0	0	0	0	0	0	0	0
m	0	0	0	0		1	1	1	1
a	0	0		1	1	1	1	1	1
d	0	0	1		2	2	2	2	2
b	0		1	2	2	2	2	2	2
u	0	1	1	2	2	2	2	2	2
n	0	1	1	2	2	2	3	3	3
n	0								
y	0								

Tabular computation. End

Read the length of the longest common subsequence in cell [N][M]

LCS. Traceback

Find the subsequence itself tracing the sequence of matches backwards

LCS. Alignment

The edit-distance based similarity metric: not enough

S	\mathbf{a}	\mathbf{c}	c	g	\mathbf{c}
S 1	\mathbf{a}	\mathbf{c}		t	\mathbf{c}

S	\mathbf{a}		\mathbf{c}	\mathbf{c}		\mathbf{g}	\mathbf{c}
S 2	\mathbf{a}	\mathbf{c}	\mathbf{c}	\mathbf{c}	t	\mathbf{g}	\mathbf{c}

In these 2 examples, the edit distance between S and $S 1$ is the same as an edit distance between S and $S 2$, but it is intuitively clear that S is more similar to S 2 than to S 1 , since they share more identical characters

The LCS-based similarity metric: not enough

S	a	c	c	c
S1	a	c	-	c

S	a	-	c	c	-	-	c
S2	a	t	c	-	t	g	c

The longer is the LCS, the more similar are two strings
The LCS alone is not a sufficient similarity metric
In these 2 examples, the LCS of S and S 1 is the same as the LCS of S and $S 2$, but it is intuitively clear that S is more similar to S1 than to S2, since they have less different characters

We want to score both the matches and the differences

Basic optimal alignment scores

Let us set the simplest weights of the edges:

For a match: award of 1
For a mismatch: penalty of -1
For a gap (insertion/deletion): penalty of -1

Then the maximum cost of the path in the edit graph will give a numerical score of the similarity between S1 and S2: large positive values - two strings are similar, negative or low positive values - the strings are different
Everything else is exactly the same

Exercise. Longest Increasing Subsequence (LIS)

- Given a sequence of n numbers $A 1 \ldots A n$, determine a subsequence (not necessarily contiguous) of maximum length in which the values in the subsequence form a strictly increasing sequence.

Exercise. LIS - solution

- Given a sequence of n numbers $A 1 \ldots A n$, determine a subsequence (not necessarily contiguous) of maximum length in which the values in the subsequence form a strictly increasing sequence.
- This problem can be reduced to the LCS between $A 1$. . . An, and sorted (A1 . . . An)
- If sequence A contains a permutation of all numbers from 1 to $n-$ then the solution is just LCS between sequence values and indices.

